SUPPLEMENTARY PROBLEMS FOR CHAPTER 2

1. A zero-mean random vector \boldsymbol{x} has the correlation matrix

$$\mathbf{R}_{\boldsymbol{x}} = \left[\begin{array}{cc} 5 & 2 \\ 2 & 5 \end{array} \right]$$

Find three distinct linear transformations that result in a random vector with uncorrelated components. What are the resulting variances of the components?

2. Tell if the following are legitimate correlation matrices. If not, tell why not.

(a)
$$\begin{bmatrix} 3 & 2j \\ 2j & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$$

3. Tell if the following could serve as legitimate density functions for a random vector. If not, state why.

(a)
$$f_{\mathbf{x}}(\mathbf{x}) = 1$$
; $x_1^2 + x_2^2 \le 1$; $-1 \le x_3 \le 1$

$$f_{\boldsymbol{x}}(\mathbf{x}) = \frac{1}{2\pi\sqrt{3}} \exp{-\mathbf{x}^{*T}} \begin{bmatrix} \frac{2}{3} & -\frac{1}{3}j\\ \frac{1}{3}j & \frac{2}{3} \end{bmatrix} \mathbf{x}$$

(c)
$$f_{\boldsymbol{x}}(\mathbf{x}) = \frac{1}{2\pi\sqrt{3}} \exp{-\mathbf{x}^T \begin{bmatrix} 1 & -1 \\ -1 & \frac{2}{3} \end{bmatrix} \mathbf{x}}$$

4. A two-dimensional random vector has a covariance matrix given by

$$\mathbf{C}_{\boldsymbol{x}} = \left[\begin{array}{cc} 2 & -0.3 \\ -0.3 & 2 \end{array} \right]$$

Find three different transformations in the form y = Ax that result in a random vector with uncorrelated components. For each case specify the matrix **A** and the covariance matrix of the new vector y.

5. A random vector \boldsymbol{x} is claimed to be characterized by the covariance matrix

$$\mathbf{C}_{\boldsymbol{x}} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array} \right]$$

- (a) Is this a legitimate covariance matrix? Prove your answer.
- (b) Find two distinct linear transformations that would result in a random vector with uncorrelated components. In each case find the covariance matrix of the transformed vector. (Note: A transformation is not distinct if the rows of the matrix are merely permuted or reversed in sign.)
- 6. Tell if the following are legitimate correlation matrices and why or why not.

(a)

$$\mathbf{R}_{\boldsymbol{x}} = \left[\begin{array}{cc} 3 & 1 \\ 1 & -3 \end{array} \right]$$

(b)

$$\mathbf{R}_{x} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array} \right]$$

(c)

$$\mathbf{R}_{\boldsymbol{x}} = \left[\begin{array}{cc} 3 & j \\ j & 3 \end{array} \right]$$

7. A 2-dimensional random vector \boldsymbol{x} has the mean vector and covariance matrix given below:

$$\mathbf{m}_{\boldsymbol{x}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \qquad \mathbf{C}_{\boldsymbol{x}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A new random vector \boldsymbol{y} is defined by the linear transformation

$$oldsymbol{y} = \left[egin{array}{cc} 1 & 0 \ 2 & 1 \end{array}
ight] oldsymbol{x}$$

- (a) What is the mean of y?
- (b) What is the covariance matrix for y?
- 8. A zero-mean random vector has the correlation matrix

$$\mathbf{R}_{\boldsymbol{x}} = \left[\begin{array}{cc} 6 & 3 \\ 3 & 6 \end{array} \right]$$

(a) Find two distinctly different linear transformations of the form

$$y = Ax$$

such that the components of \boldsymbol{y} are uncorrelated.

(b) What is the correlation matrix for \boldsymbol{y} corresponding to each of your answers above?